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Abstract. We address the issue of stock market fluctuations within Langevin Dynamics (LD) and the
thermodynamics definitions of multifractality in order to study its second-order characterization given by
the analogous specific heat Cq , where q is an analogous temperature relating the moments of the generating
partition function for the financial data signals. Due to non-linear and additive noise terms within the LD,
we found that Cq can display a shoulder to the right of its main peak as also found in the S&P500 historical
data which may resemble a classical phase transition at a critical point.

PACS. 02.50.Ey Stochastic processes – 05.40.-a Fluctuation phenomena, random processes, noise, and
Brownian motion – 89.90.+n Other topics in areas of applied and interdisciplinary physics

1 Introduction

Simulated descriptions of at least some universal features
of financial prices has recently been produced by multi-
fractal techniques [1] and also linear [2,3] and non-linear
[4] Langevin Dynamics (LD). On one hand, multifractals
reasonably describe patterns that resemble sudden (both
large and small) market price oscillations, ensuing bursts
of long-range volatility as in the case of stochastic multi-
agent models [5]. On the other hand, non-linear [4] LD
generates fat tail distributions of price differences as found
in the analysis of financial time series [6,7].

There is a vast literature on the characterization of
financial data based on turbulence, multifractality, auto-
correlation functions and power spectra studies (see, e.g.,
[8–12]). However the second-order derivative relating the
increment of price values of assets∆x(t, 1) ≡ x(t+1)−x(t)
and given by an analogous specific heat Cq similarly to the
multifractal studies of diffusion-limited aggregates (DLA)
[13], has only recently been analysed by the author in the
case of temporal fluctuations of the S&P500 stock index
[14]. The analogous specific heat is given by the second
order derivative of the analogous free energy τ relating
the multifractal dimension Dq (cf., Eqs. (6) and (7) be-
low). The q-moments of the generating partition function
for the financial data signals ∆x(t, 1) corresponds to an
analogous temperature.

As an illustrative example, the curve (a) in the lower
Figure 1 shows the presence of an anomalous shoulder
in Cq when considering 3287 (S&P500) data points in-
cluding the largest burst that corresponds to the so-called
Black Monday crash measured in October of 1987. For
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comparison, in the plotted curves (b, c, d) of Figure 1 we
remove the crash from the historical data and make the
measurement of Cq anew. Curve (b) is the result of just
removing the single data point for the Black Monday (i.e.,
by considering 3286 points), whereas the curve (c) is the
result of removing the Black Monday plus all successive
data (i.e., considering 1970 initial points). On the other
hand, curve (d) is the result of taking 499 initial data
points only.

Clearly, as one removes or approaches the Black Mon-
day data the shoulder in Cq of curve (a) does not disap-
pear as can be seen in curves (b, c). A similar behaviour
is observed analysing the data from few days prior to the
S&P500 crash. As a difference Cq only displays a typical,
single peaked form without anomalies for the data prior
to, but far away from, the Black Monday (as in curve d).

In this work we make an attempt to characterize
the onset of market crashes by analysing the second-
order derivative relating the increment of prices of assets
∆x(t, 1) and given by Cq. We shall consider the LD of
financial systems [3,4] to show that the presence of an
anomalous shoulder in the specific heats as those plotted
in Figure 1 can also be a consequence of having non-linear
stochastic terms within LD.

2 Linear and non-linear Langevin dynamics

We consider the differential equation with an additive
noise term of the form gt times ηt:

dx(t)
dt

= ht(x(t)) + gt(x(t))ηt, (1)
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Fig. 1. Time evolution ∆x(t, 1) of the S&P500 stock index
for the period 1980-1992 as a function of trading time lags (in
a.u.) and corresponding analogous specific heat Cq obtained
using equation (7). The lower curve (a) shows the presence of
an anomalous shoulder in Cq when considering 3287 (S&P500)
data points including the largest burst that corresponds to the
crash measured in October of 1987. Curve (b) is the result of
removing this Black Monday crash data point, whereas curve
(c) is the result of removing all successive data. Curve (d) is
the result of taking 499 initial data points only.

where as usual ηt is assumed to be Gaussian-white whose
average and variance are given by ηt = 0 and ηtηt′ =
2Dδ(t− t′), respectively.

The dynamics of simplest financial systems with ran-
dom noise has been proposed in [3,15,16] by setting

ht(x(t)) ≡ −λtx(t); gt(x(t)) ≡ 1, (2)

with λt a multiplicative noise that sets the time scale for
deviations from equilibrium. In the context of economic
models, x(t) may represent price values, λt the rate of
change of the price, and ηt some external noise of various
sources. In the following we shall refer equation (2) as the
linear LD. We add that the scaling behaviour and the 1/f
noise of trajectories and velocities with time within linear
LD with fluctuating random forces has been reported in
our previous work [17].

Another simple financial agent model has been intro-
duced in [4] in analogy with the mean field approach to
the Ising model for a magnetic system characterized by

ht(x(t)) ≡ Jx(t) + bx2(t)− cx3(t); gt(x(t)) ≡ e+ x(t),
(3)

with J , b and c constants associated with higher-order
agent interactions leading to power laws tails. The pa-
rameter e allows this agent model to take up the simple
Langevin form when x(t)→ 0. The dynamics of time series
from stochastic processes governed by a similar non-linear
LD has also been reported in [18].

3 Multifractality and analogous specific heat

In accordance with the standard of economic notation only
relative changes ∆x(t, 1) are usually relevant. From these
fluctuations, we follow [14] and construct the generating
partition function Z in terms of the normalized measures
µt > 0, and its moments q, by the scaling

Z(q,N) =
N∑
t=1

µqt ∼ N−τ(q) , (4)

where

µt ≡
|∆x(t, 1)|∑N
t=1 |∆x(t, 1)|

· (5)

In the above we have divided the 1D system of length
L into N lines of length ` (i.e., N ∼ L/`), and
have associated this N with the measured discrete x(t)
sequences [19].

In order to get the thermodynamics interpretation of
multifractality (see, e.g. [13]), we then consider standard
definitions

τ(q) ≡ [q − 1]Dq, (6)

where τ represents an analogous free energy and Dq the
multifractal dimension. Of particular interest here is to
consider the analogous specific heat given by the second
order derivative of τ , namely

−Cq ≡
∂2τ(q)
∂q2

≈ τ(q + 1)− 2τ(q) + τ(q − 1). (7)

4 Discussion

In the upper curves of Figure 2 we show some typical
time evolution of ∆x(t, 1) governed by the linear LD with
ht and gt given in equation (2) for different values of
ηt = (1 − 2rn′)v and λt = (1 − 2rn)u with v = 0.1,
u = −0.005, −0.02 and −0.1, and using the random num-
bers 0 ≤ rn,n′ ≤ 1. In the lower curves of Figure 2 we dis-
play the non-linear LD fluctuations of∆x(t, 1) with ht and
gt given in equation (3) with J = −1, b = 0.01, c = 0.001,
e = 0.005 and for different values of ηt = (1 − 2rn′′)n
such that n = 1.2, 1.5 and 1.8 and using random numbers
0 ≤ rn′′ ≤ 1.

From the curves in Figure 2 it can be seen that∆x(t, 1)
has relatively small finite values, and exhibits intermit-
tent bursts due to the weak noise terms. The presence
of peaked narrow fluctuations can increase with both the
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Fig. 2. Time evolution of ∆x(t, 1) governed by the LD of equation (1) using the linear terms in equation (2) (upper curves)
and non-linear terms of equation (3) (lower curves).

multiplicative and additive noise strength. However, wider
volatility clusters are formed over large periods of time
when decreasing, in the linear LD, the amplitude u of the
multiplicative λt noise as compared to the case of increas-
ing n of the additive noise ηt within the non-linear LD. It
is this difference of behaviour that will lead Cq to display
an anomalous shoulder to the right of its main peak to be
shown below.

Let us first see if the generalized dimensions Dq for
both linear and non-linear LD, which are extracted by
considering the definition in equation (6) in conjunction
with the scaling of equation (4), are sufficiently smooth
and multifractal for Cq of equation (7) to be meaningful
[20,21]. The discrete values of q used range from −5 to +5
at increments of 0.033.

In Figure 3 we display the plots of Dq for the different
values of u and n as used in Figure 2 together with the
plots of the limit 1−Dq→∞ for the linear and non-linear
LD (upper and lower curves, respectively). If q < −1, we
observe that both results for Dq follow a typical conver-
gent behaviour according to multifractal physics. In the
range u > −0.02 and n < 1.5, Dq is fully multifractal-like.

For lower values of u < −0.02 and greater values of
n > 1.5, we find a non-monotonous decreasing behaviour
of Dq, in correspondence with the double-peaked form of
the respective Cq displayed in Figure 4 which relates the
presence of the intermittent bursts in ∆x(t, 1) shown in
Figure 2. Such a non-monotonous behaviour of Dq is more
evident in the case of non-linear LD. From the Dq data
for the linear LD case, the multifractality strength of the
∆x(t, T ) ≡ x(t + T ) − x(t) sequences at different integer
time lags T ≥ 1, i.e, 1 −Dq→∞, does not seem to follow
a power-law scaling for 1 < T < 10 within all u consid-
ered. As a consequence of the complicated behaviour of the

non-linear form of equation (3) coupled to ηt, which in-
fluences the (thinner) volatility clusters shown in Figure 2
(lower curves), it is not straightforward that 1−Dq→∞ in
this case follows a power scaling as in [21].

Let us see next how this type of Dq behaviour given
in Figure 3 influences the analogous specific heat of equa-
tion (7) and how it characterizes the temporal large and
small intermittent bursts representing variations in finan-
cial prices. In Figure 4 we plot Cq for the LD parameter
set used in Figures 2 and 3. For the linear LD case, we
find that the main peak of our numerical Cq curves for
u > −0.02 resembles a classical first-order phase transition
at a critical point q = −1. However, the sharp peak turns
slightly asymmetric around the critical point for u = −0.1.
Surprisingly, this asymmetry becomes evident within the
non-linear LD. The analogous specific heat in this case
displays a higher shoulder to the right of the main peak
as a function of n ≥ 1.5 which is in qualitative agreement
with the Cq curve for the S&P500 index data shown in
Figure 1 (lower curves). The presence of the shoulder in
Cq is then associated to the non-monotonous behaviour of
Dq as in Figure 3.

The same Cq shape at a phase transition as in Curve
(d) of Figure 1 and Figure 4, has been reported in the case
of DLA [13]. A non monotonic specific heat shape with a
superimposed second peak (resembling the shoulder of the
type of Curve (a) in Fig. 1 and Fig. 4 lower curves) has
been found in the Hubbard model on a cluster of magnetic
sites [22,23] and, most recently, in a uniform spin model
on a fractal [24].

When decreasing n ≤ 1.2 in the non-linear LD, the
sudden intermittent bursts in ∆x(t, 1) as well as the shoul-
der in Cq tend to vanish. It is this latter feature that make
us argue that the stochastic price behaviour of financial
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Fig. 4. Analogous specific heat Cq of the linear (upper curve)
and non-linear (lower curve) LD derived using equation (7).

assets may be characterized by an analogous Cq which re-
sembles the phase transition features as measured in mul-
tifractal physics.

5 Conclusion

We have made a novel attempt to characterize the on-
set of market crashes via an analogous specific heat us-
ing the thermodynamics definitions of multifractality. We
presented an study of generalized dimensions Dq of equa-
tion (6), and the analogous specific heat Cq of equa-
tion (7), characterizing the absolute moments of the
increments of two LD, a linear one (cf., Eq. (2)) and a
non-linear one (cf., Eq. (3)), within the context of a mul-
tifractal approach to financial time series analysis [14].

Tunning parameters in these dynamics introduces wide
clusters and bursts of volatility in the processes. This be-
haviour was shown to mimics characteristics of S&P500
data which were measured according to an analogous
phase transition in the behaviour of Cq.

In this work, the second-order derivative relating the
increment of prices of assets ∆x(t, 1), and given by Cq,
follows similar Legendre transforms for the thermody-
namics analysis of (DLA) [13]. Our findings may relate
the results of the kind of those described in [25] where a
phase transition-like appears in the presence of two dis-
tinct phases when analysing the behaviour of Dq. In the
latter, these two phases are built out of rare events on the
one hand and some “background” (e.g., bursts of volatil-
ity in the processes) on the other hand. We have found
that a shoulder appears in the analogous Cq due to the
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presence of wide volatility clusters as found in the S&P500
historical data, or in the non-linear LD.

The message here is that due to non-linear and addi-
tive noise terms within the LD, Cq can display a shoulder
to the right of its main peak data as also found in the
S&P500 historical data, which may resemble a classical
phase transition at a critical point.

The author thanks Dr. V.L. Nguyen for his interest in this
work, Prof. P. Richmond for providing reference [4] in advance
and the two anonymous Referees for their suggestions.
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